Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16384-16399, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617610

RESUMO

A series of novel 24 phenylhydrazono phenoxyquinoline derivatives were synthesized with moderate to excellent yield and screened for their efficacy against the α-amylase enzyme through in silico studies. The structures were characterized using spectroscopic techniques such as 1HNMR, 13CNMR, and HREI-MS. Comprehensive computational studies including, drug-likeness and ADMET profiling, quantum chemical calculations, molecular docking, and molecular dynamics (MD) simulation studies, were performed. A density functional theory study of the synthesized compounds indicated a favorable reactivity profile. The synthesized novel analogues were docked against α-amylase (PDB 6OCN) enzymes to investigate the binding interactions. Based on the docking studies, one of the compounds was found to be the hit with the highest negative binding affinity for α-amylase. A MD simulation study indicated stable binding throughout the simulation.

2.
J Biomol Struct Dyn ; 41(19): 9865-9878, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36404604

RESUMO

Acetylcholinesterase prevails in the healthy brain, with butyrylcholinesterase reflected to play a minor role in regulating brain acetylcholine (ACh) levels. However, BuChE activity gradually increases in patients with (AD), while AChE activity remains unaffected or decays. Both enzymes therefore represent legitimate therapeutic targets for ameliorating the cholinergic deficit considered to be responsible for the declines in cognitive, behavioural, and global functioning characteristic of AD. Current study described the synthesis of indole-based sulfonamide derivatives (1-23) and their biological activity. Synthesis of these scaffolds were achieved by mixing chloro-substituted indole bearing amine group with various substituted benzene sulfonyl chloride in pyridine, under refluxed condition to obtained desired products. All products were then evaluated for AchE and BuchE inhibitory potential compare with positive Donepezil as standard drug for both AchE and BchE having IC50 = 0.016 ± 0.12 and 0.30 ± 0.010 µM respectively. In this regard analog 9 was found potent having IC50 value 0.15 ± 0.050 µM and 0.20 ± 0.10 for both AchE and BuChE respectively. All other derivatives also found with better potential. All compounds were characterized by various techniques such as 1H, 13C-NMR and HREI-MS. In addition, biological activity was maintained to explore the bioactive nature of scaffolds and their protein-ligand interaction (PLI) was checked through molecular docking study.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
3.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458609

RESUMO

Electron-rich, nitrogenous heteroaromatic compounds interact more with biological/cellular components than their non-nitrogenous counterparts. The strong intermolecular interactions with proteins, enzymes, and receptors confer significant biological and therapeutic properties to the imidazole derivatives, giving rise to a well-known and extensively used range of therapeutic drugs used for infections, inflammation, and cancer, to name a few. The current study investigates the anti-cancer properties of fourteen previously synthesized nitrogenous heterocycles, derivatives of imidazole and oxazolone, on a panel of cancer cell lines and, in addition, predicts the molecular interactions, pharmacokinetic and safety profiles of these compounds. METHOD: The MTT and CellTiter-Glo® assays were used to screen the imidazole and oxazolone derivatives on six cancer cell lines: HL60, MDA-MB-321, KAIMRC1, KMIRC2, MCF-10A, and HCT8. Subsequently, in vitro tubulin staining and imaging were performed, and the level of apoptosis was measured using the Promega ApoTox-Glo® triplex assay. Furthermore, several computational tools were utilized to investigate the pharmacokinetics and safety profile, including PASS Online, SEA Search, the QikProp tool, SwissADME, ProTox-II, and an in silico molecular docking study on tubulin to identify the critical molecular interactions. RESULTS: In vitro analysis identified compounds 8 and 9 to possess the most significant potent cytotoxic activity on the HL60 and MDA-MB-231 cell lines, supported by PASS Online anti-cancer predictions with pa scores of 0.413 and 0.434, respectively. In addition, compound 9 induced caspase 3/7 dependent-apoptosis and interfered with tubulin polymerization in the MDA-MB-231 cell line, consistent with in silico docking results, identifying binding similarity to the native ligand colchicine. All the derivatives, including compounds 8 and 9, had acceptable pharmacokinetics; however, the safety profile was suboptimal for all the tested derivates except compound 4. CONCLUSION: The imidazole derivative compound 9 is a promising anti-cancer agent that switches on caspase-dependent apoptotic cell death and modulates microtubule function. Therefore, it could be a lead compound for further drug optimization and development.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Nitrogênio/farmacologia , Oxazolona/farmacologia , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
4.
J Biomol Struct Dyn ; 40(18): 8232-8247, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33860726

RESUMO

In search of potent urease inhibitor indole analogues (1-22) were synthesized and evaluated for their urease inhibitory potential. All analogues (1-22) showed a variable degree of inhibitory interaction potential having IC50 value ranging between 0.60 ± 0.05 to 30.90 ± 0.90 µM when compared with standard thiourea having IC50 value 21.86 ± 0.90 µM. Among the synthesized analogues, the compounds 1, 2, 3, 5, 6, 8, 12, 14, 18, 20 and 22 having IC50 value 3.10 ± 0.10, 1.20 ± 0.10, 4.60 ± 0.10, 0.60 ± 0.05, 5.30 ± 0.20, 2.50 ± 0.10, 7.50 ± 0.20, 3.90 ± 0.10, 3.90 ± 0.10, 2.30 ± 0.05 and 0.90 ± 0.05 µM respectively were found many fold better than the standard thiourea. All other analogues showed better urease interaction inhibition. Structure activity relationship (SAR) has been established for all analogues containing different substituents on the phenyl ring. To understand the binding interaction of most active analogues with enzyme active site docking study were performed.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores Enzimáticos , Urease , Inibidores Enzimáticos/química , Indóis , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tioureia/química , Tioureia/metabolismo
5.
Angew Chem Int Ed Engl ; 59(51): 23035-23039, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32846044

RESUMO

Hollow organic molecular cocrystals comprised of 9-methylanthracene-1,2,4,5-tetracyanobenzene (9MA-TCNB) and naphthalene-1,2,4,5-tetracyanobenzene (NAPH-TCNB) were fabricated using a surfactant-mediated co-reprecipitation method. The crystals exhibit a narrow size distribution that can be easily tuned by varying the concentration of surfactant and incubation temperature. The rectangular crystals possess symmetrical twinned cavities with an estimated storage volume on the order of 10-10  L. An aqueous dye solution can be incorporated into the cavities during crystal growth and stored inside for up to several hours, confirming the sealed nature of the hollow chambers. Our results demonstrate that it is possible to harness non-classical crystal growth to fabricate organic molecular crystals with novel topologies.

7.
Bioorg Med Chem Lett ; 28(20): 3372-3375, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201291

RESUMO

We report here the design and synthesis of a novel series of benzylamines that are potent and selective inhibitors of uPA with promising oral availability in rat. Further evaluation of one representative (ZK824859) of the new structural class showed that this compound lowered clinical scores when dosed in either acute or chronic mouse EAE models, suggesting that uPA inhibitors of this type could be useful for the treatment of multiple sclerosis.


Assuntos
Benzilaminas/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Inibidores de Serina Proteinase/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Animais , Benzilaminas/síntese química , Benzilaminas/química , Benzilaminas/farmacocinética , Sítios de Ligação , Feminino , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacocinética , Relação Estrutura-Atividade , Ativador de Plasminogênio Tipo Uroquinase/química
8.
ACS Med Chem Lett ; 9(5): 472-477, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29795762

RESUMO

There is a significant unmet medical need for more efficacious and rapidly acting antidepressants. Toward this end, negative allosteric modulators of the N-methyl-d-aspartate receptor subtype GluN2B have demonstrated encouraging therapeutic potential. We report herein the discovery and preclinical profile of a water-soluble intravenous prodrug BMS-986163 (6) and its active parent molecule BMS-986169 (5), which demonstrated high binding affinity for the GluN2B allosteric site (Ki = 4.0 nM) and selective inhibition of GluN2B receptor function (IC50 = 24 nM) in cells. The conversion of prodrug 6 to parent 5 was rapid in vitro and in vivo across preclinical species. After intravenous administration, compounds 5 and 6 have exhibited robust levels of ex vivo GluN2B target engagement in rodents and antidepressant-like activity in mice. No significant off-target activity was observed for 5, 6, or the major circulating metabolites met-1 and met-2. The prodrug BMS-986163 (6) has demonstrated an acceptable safety and toxicology profile and was selected as a preclinical candidate for further evaluation in major depressive disorder.

9.
Bioorg Med Chem Lett ; 28(9): 1459-1463, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29628327

RESUMO

A hit to lead process to identify reversible, orally available ADP receptor (P2Y12) antagonists lead compounds is described. High throughput screening afforded 1. Optimization of 1, using parallel synthesis methods, a methyl scan to identify promising regions for optimization, and exploratory SAR on these regions, provided 22 and 23. Compound 23 is an orally available, competitive reversible antagonist (KB = 94 nM for inhibition of ADP-induced platelet aggregation). It exhibits high metabolic stability in human, rat and dog liver microsomes and is orally absorbed. Although plasma level after oral dosing of 22 and 23 to rats is low, reasonable levels were achieved to merit extensive lead optimization of this structural class.


Assuntos
Fluorenos/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Administração Oral , Animais , Cães , Relação Dose-Resposta a Droga , Fluorenos/administração & dosagem , Fluorenos/química , Ensaios de Triagem em Larga Escala , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Agregação Plaquetária/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
10.
Biomed Rep ; 8(3): 275-282, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29564125

RESUMO

The 'Therapeutics discovery: From bench to first in-human trials' conference, held at the King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), Kingdom of Saudi Arabia (KSA) from October 10-12, 2017, provided a unique opportunity for experts worldwide to discuss advances in drug discovery and development, focusing on phase I clinical trials. It was the first event of its kind to be hosted at the new research center, which was constructed to boost drug discovery and development in the KSA in collaboration with institutions, such as the Academic Drug Discovery Consortium in the United States of America (USA), Structural Genomics Consortium of the University of Oxford in the United Kingdom (UK), and Institute of Materia Medica of the Chinese Academy of Medical Sciences in China. The program was divided into two parts. A pre-symposium day took place on October 10, during which courses were conducted on clinical trials, preclinical drug discovery, molecular biology and nanofiber research. The attendees had the opportunity for one-to-one meetings with international experts to exchange information and foster collaborations. In the second part of the conference, which took place on October 11 and 12, the clinical trials pipeline, design and recruitment of volunteers, and economic impact of clinical trials were discussed. The Saudi Food and Drug Administration presented the regulations governing clinical trials in the KSA. The process of preclinical drug discovery from small molecules, cellular and immunologic therapies, and approaches to identifying new targets were also presented. The recommendation of the conference was that researchers in the KSA must invest more fund, talents and infrastructure to lead the region in phase I clinical trials and preclinical drug discovery. Diseases affecting the local population, such as Middle East Respiratory Syndrome and resistant bacterial infections, represent the optimal starting point.

11.
J Pharmacol Exp Ther ; 363(3): 377-393, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28954811

RESUMO

(R)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one (BMS-986169) and the phosphate prodrug 4-((3S,4S)-3-fluoro-1-((R)-1-(4-methylbenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)phenyl dihydrogen phosphate (BMS-986163) were identified from a drug discovery effort focused on the development of novel, intravenous glutamate N-methyl-d-aspartate 2B receptor (GluN2B) negative allosteric modulators (NAMs) for treatment-resistant depression (TRD). BMS-986169 showed high binding affinity for the GluN2B subunit allosteric modulatory site (Ki = 4.03-6.3 nM) and selectively inhibited GluN2B receptor function in Xenopus oocytes expressing human N-methyl-d-aspartate receptor subtypes (IC50 = 24.1 nM). BMS-986169 weakly inhibited human ether-a-go-go-related gene channel activity (IC50 = 28.4 µM) and had negligible activity in an assay panel containing 40 additional pharmacological targets. Intravenous administration of BMS-986169 or BMS-986163 dose-dependently increased GluN2B receptor occupancy and inhibited in vivo [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding, confirming target engagement and effective cleavage of the prodrug. BMS-986169 reduced immobility in the mouse forced swim test, an effect similar to intravenous ketamine treatment. Decreased novelty suppressed feeding latency, and increased ex vivo hippocampal long-term potentiation was also seen 24 hours after acute BMS-986163 or BMS-986169 administration. BMS-986169 did not produce ketamine-like hyperlocomotion or abnormal behaviors in mice or cynomolgus monkeys but did produce a transient working memory impairment in monkeys that was closely related to plasma exposure. Finally, BMS-986163 produced robust changes in the quantitative electroencephalogram power band distribution, a translational measure that can be used to assess pharmacodynamic activity in healthy humans. Due to the poor aqueous solubility of BMS-986169, BMS-986163 was selected as the lead GluN2B NAM candidate for further evaluation as a novel intravenous agent for TRD.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Organofosfatos/uso terapêutico , Piperidinas/uso terapêutico , Pró-Fármacos/uso terapêutico , Pirrolidinonas/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo , Administração Intravenosa , Regulação Alostérica , Animais , Antidepressivos/efeitos adversos , Antidepressivos/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Ondas Encefálicas/efeitos dos fármacos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Transtornos Dissociativos/induzido quimicamente , Macaca fascicularis , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Organofosfatos/efeitos adversos , Organofosfatos/farmacocinética , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacocinética , Pirrolidinonas/efeitos adversos , Pirrolidinonas/farmacocinética , Ensaio Radioligante , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Xenopus
12.
Thromb Res ; 122(4): 523-32, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18495218

RESUMO

ADP plays a key role in platelet aggregation which has led to the development of antiplatelet drugs that target the P2Y12 receptor. The aim of this study was to characterize the effects of two novel P2Y12 receptor antagonists, BX 667 and its active metabolite BX 048, on platelets. BX 667 and BX 048 block the binding of 2MeSADP to platelets and antagonize ADP-induced platelet aggregation in human, dog and rat washed platelets. Both compounds were shown to be reversible inhibitors of platelet aggregation. BX 048 prevents the decrease in cAMP induced by treatment of platelets with ADP. The specificity of BX 667 and BX 048 was demonstrated against cell lines expressing P2Y1 and P2Y6 as well as against a panel of receptors and enzymes. Taken all together these data show that both BX 048 and BX 667 are potent P2Y12 antagonists with high specificity which, in the accompanying paper are demonstrated to behave predictably in vivo.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cetoácidos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2 , Quinolinas/farmacologia , Receptores Purinérgicos P2/metabolismo , Difosfato de Adenosina/química , Animais , Cálcio/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro , Ligantes , Modelos Biológicos , Agregação Plaquetária/efeitos dos fármacos , Ligação Proteica , Ratos , Receptores Purinérgicos P2Y12 , Especificidade da Espécie
13.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 2): 149-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18219114

RESUMO

This article reports the crystal structures of inhibitors of the functional form of thrombin-activatable fibrinolysis inhibitor (TAFIa). In vivo experiments indicate that selective inhibitors of TAFIa would be useful in the treatment of heart attacks. Since TAFIa rapidly degrades in solution, the homologous protein porcine pancreatic carboxypeptidase B (pp-CpB) was used in these crystallography studies. Both TAFIa and pp-CpB are zinc-based exopeptidases that are specific for basic residues. The final development candidate, BX 528, is a potent inhibitor of TAFIa (2 nM) and has almost no measurable effect on the major selectivity target, carboxypeptidase N. BX 528 was designed to mimic the tripeptide Phe-Val-Lys. A sulfonamide replaces the Phe-Val amide bond and a phosphinate connects the Val and Lys groups. The phosphinate also chelates the active-site zinc. The electrostatic interactions with the protein mimic those of the natural substrate. The primary amine in BX 528 forms a salt bridge to Asp255 at the base of the S1' pocket. The carboxylic acid interacts with Arg145 and the sulfonamide is hydrogen bonded to Arg71. Isopropyl and phenyl groups replace the side chains of Val and Phe, respectively. A series of structures are presented here that illustrate the evolution of BX 528 from thiol-based inhibitors that mimic a free C-terminal arginine. The first step in development was the replacement of the thiol with a phosphinate. This caused a precipitous drop in binding affinity. Potency was reclaimed by extending the inhibitors into the downstream binding sites for the natural substrate.


Assuntos
Carboxipeptidase B/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sítios de Ligação , Carboxipeptidase B/química , Carboxipeptidase B2/química , Cristalografia por Raios X/métodos , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular
14.
Bioorg Med Chem Lett ; 17(14): 3819-25, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17544272

RESUMO

Based on the lead compound BX-517, a series of C-4' substituted indolinones have been synthesized and evaluated for PDK1 inhibition. Modification at C-4' of the pyrrole afforded potent compounds (7b and 7d) with improved solubility and ADME properties. In this letter, we describe the synthesis, selectivity profile, and pharmacokinetic data of selected compounds.


Assuntos
Indóis/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ureia/análogos & derivados , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Linhagem Celular Tumoral , Humanos , Indóis/farmacologia , Inibidores de Proteínas Quinases/química , Ureia/química , Ureia/farmacologia
15.
Thromb Haemost ; 97(5): 847-55, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17479197

RESUMO

Irreversible platelet inhibitors, such as aspirin and clopidogrel, have limited anti-thrombotic efficacy in the clinic due to their bleeding risk. We have developed an orally active reversible P2Y(12) receptor antagonist, BX 667. The aim of this study was to determine if the reversible antagonist BX 667 had a greater therapeutic index than the irreversible P2Y(12) receptor antagonist clopidogrel. Since BX 667 is rapidly converted to its active metabolite BX 048 in rats, we first injected BX 048 intravenously (iv) in a rat arterial venous (A-V) shunt model of thrombosis. BX 048 dose- and concentration-dependently attenuated thrombosis. When administered orally, BX 667 and clopidogrel had similar efficacy, but BX 667 caused less bleeding than clopidogrel. In a rat model of a platelet-rich thrombus induced by vessel injury with FeCl(2), both BX 667 and clopidogrel exhibited higher levels of thrombus inhibition after oral administration compared to their potency in the A-V shunt model. Again, BX 667 caused less bleeding than clopidogrel. In a dog cyclic flow model, iv injection of either BX 667 or clopidogrel dose-dependently reduced thrombus formation with lower bleeding for BX 667 than clopidogrel. Inhibition of thrombosis was highly correlated with inhibition of ADP-induced platelet aggregation in these animal models. In dogs pre-treated with aspirin, BX 667 maintained its wider therapeutic index, measured by inhibition of platelet aggregation over bleeding, compared to the aspirin-clopidogrel combination. These data demonstrate that the reversible P2Y(12) receptor antagonist, BX 667, has a wider therapeutic index than clopidogrel in experimental models of thrombosis.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2 , Trombose/prevenção & controle , Animais , Derivação Arteriovenosa Cirúrgica , Lesões das Artérias Carótidas/tratamento farmacológico , Clopidogrel , Modelos Animais de Doenças , Cães , Técnicas In Vitro , Masculino , Estrutura Molecular , Inibidores da Agregação Plaquetária/sangue , Inibidores da Agregação Plaquetária/química , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2 , Receptores Purinérgicos P2Y12 , Ticlopidina/análogos & derivados , Ticlopidina/farmacologia
17.
Thromb Haemost ; 97(1): 45-53, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17200770

RESUMO

We have discovered a novel small-molecule (3-phosphinoylpropionic acid) inhibitor of activated thrombin activatable fibrinolysis inhibitor (TAFIa), BX 528, which had an IC (50) of 2 nM in an enzymatic assay and 50 nM in an in-vitro clot lysis assay, with 3,500- to 35,000-fold selectivity against other carboxypeptidases, such as CPN, CPZ and CPD, and 5- and 12-fold selectivity against CPE (CPH) and CPB, respectively. At 10 micro M, BX 528 had no significant activity (<50% inhibition or antagonism) in a panel of 137 enzymes and receptors. It had no effects on blood coagulation and platelet aggregation up to 300 and 10 micro M, respectively. The plasma half-life following intravenous administration was 0.85 hours in rats and 4.5 hours in dogs. No significant metabolism was detected in human, dog or rabbit hepatic microsomes, and no significant inhibition of cytochrome P450 3A4 and 2D6 up to 30 micro M. No cytotoxic or cell proliferative effects were found in three hepatic and renal cell lines up to 300 micro M and no mutagenic activity was seen in the Ames II screen. There were no significant hemodynamic effects in rats and dogs up to 100 and 30 mg/kg with peak plasma drug concentrations of approximately 1,000 and 300 micro M, respectively. In an in-vivo complement activation model in guinea pigs, BX 528 showed minimal inhibition of plasma CPN activity up to 60 mg/kg with peak plasma concentrations up to 250 micro M. Thus, these data demonstrate that BX 528 is a novel, potent, selective and safe TAFIa inhibitor.


Assuntos
Carboxipeptidase B2/antagonistas & inibidores , Inibidores Enzimáticos/farmacocinética , Animais , Coagulação Sanguínea/efeitos dos fármacos , Carboxipeptidases/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Cães , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cobaias , Meia-Vida , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Propionatos/farmacocinética , Propionatos/farmacologia , Coelhos , Ratos , Especificidade por Substrato
18.
Thromb Haemost ; 97(1): 54-61, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17200771

RESUMO

We have discovered a novel small-molecule TAFIa inhibitor, BX 528, which is potent, highly selective against other carboxypeptidases and safe. The present study was to determine if BX 528 can enhance exogenous and endogenous thrombolysis in four different animal models. In the first three models, a thrombus was induced by FeCl (2) (dogs) or laser (rats) injury of the femoral artery, or formed ex vivo and implanted in the jugular vein in rabbits. A low dose of exogenous t-PA was given to induce a low-level thrombolysis on an established thrombus. Co-treatment with BX 528 further enhanced the thrombolytic effects induced by the exogenous t-PA and, thus, reduced thrombosis in all three animal models. In a second rat model, fibrin deposition in the lungs was induced by batroxobin, which was spontaneously resolved in 30 minutes due to the activation of endogenous fibrinolysis. Pre-treatment with lipopolysaccharide (LPS) attenuated this spontaneous fibrinolysis. Co-treatment with 10 mg/kg BX 528 prevented the LPS-induced attenuation of endogenous fibrinolysis. Thus, these studies demonstrated that inhibition of TAFIa by BX 528, our newly discovered small-molecule TAFIa inhibitor, enhanced both the exogenous (induced by a low dose of t-PA) and endogenous (LPS-induced resistance) thrombolysis without increasing the bleeding risk in four different animal models of thrombosis in different species (rat, dog and rabbit) employing different thrombogenic stimuli (FeCl (2) , laser, ex vivo and batroxobin) to induce thrombus formation in different tissues (artery, vein and lung microcirculation).


Assuntos
Carboxipeptidase B2/antagonistas & inibidores , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Trombose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Cães , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Lipopolissacarídeos/farmacologia , Propionatos/farmacologia , Coelhos , Ratos , Ativador de Plasminogênio Tecidual/farmacologia
19.
Bioorg Med Chem Lett ; 17(5): 1349-54, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17189688

RESUMO

A novel series of cyclic potent, selective, small molecule, thiol-based inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) and the crystal structures of TAFIa inhibitors bound to porcine pancreatic carboxypeptidase B are described. Three series of cyclic arginine and lysine mimetic inhibitors vary significantly in their selectivity against other human basic carboxypeptidases, carboxypeptidase N and carboxypeptidase B. (-)2a displays TAFIa IC50 = 3 nM and 600-fold selectivity against CPN. Inhibition of TAFIa with (rac)2a resulted in dose dependent acceleration of human plasma clot lysis in vitro and was efficacious as an adjunct to tPA in an in vivo rabbit jugular vein thrombolysis model.


Assuntos
Ácido 3-Mercaptopropiônico/farmacologia , Carboxipeptidase B2/antagonistas & inibidores , Fibrinolíticos/síntese química , Animais , Arginina , Carboxipeptidase B/antagonistas & inibidores , Cristalografia por Raios X , Fibrinolíticos/farmacocinética , Fibrinolíticos/farmacologia , Humanos , Lisina , Lisina Carboxipeptidase/antagonistas & inibidores , Mimetismo Molecular , Peptídeos Cíclicos , Coelhos , Relação Estrutura-Atividade , Especificidade por Substrato , Suínos
20.
Mol Pharmacol ; 69(1): 309-16, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16221874

RESUMO

In this study, we report the first example of a nonpeptide chemokine receptor agonist, 2-{2-[4-(3-phenoxybenzyl)piperazin-1-yl]ethoxy}ethanol (ZK 756326), for the CC chemokine receptor CCR8. ZK 756326 inhibited the binding of the CCR8 ligand I-309 (CCL1), with an IC(50) value of 1.8 muM. Furthermore, ZK 756326 was a full agonist of CCR8, dose-responsively eliciting an increase in intracellular calcium and cross-desensitizing the response of the receptor to CCL1. In addition, ZK 756326 stimulated extracellular acidification in cells expressing human CCR8. The ability of ZK 756326 to induce a response was receptor-specific and mediated through Galpha(i), because it could be blocked by treatment with pertussis toxin. The CCR8 agonist activated cells expressing murine CCR8, eliciting their chemotaxis and inducing phosphorylation of extracellular signal-regulated kinase ERK1/2. Like CCL1, ZK 756326 inhibited human immunodeficiency virus (HIV) fusion of cells expressing CD4 and CCR8. Finally, unlike mCCL1, ZK 756326 bound to and activated a form of mCCR8 that was mutated to eliminate O-linked sulfation at tyrosines 14 and 15. Therefore, ZK 756326 is most probably not binding in the same manner as CCL1 but can activate the switch mechanism involved in transducing signaling events. In summary, we have identified a nonpeptide agonist of CCR8. This compound may be useful in evaluating the physiological role of CCR8 in HIV infection, as well as in the general study of CCR8 biology without the constraints inherent to the use of protein agonists such as its natural ligand.


Assuntos
Piperazinas/farmacologia , Receptores de Quimiocinas/agonistas , Animais , Ligação Competitiva , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Fosforilação , Piperazinas/química , Receptores CCR8 , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...